Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
eyes:logics:sharpen3d [2017/06/08 13:36]
jschlie1
eyes:logics:sharpen3d [2017/06/13 15:17] (current)
lschult
Line 2: Line 2:
 Map sharpening allows to correct for the contrast loss at high resolution, resulting in better interpretable maps.  Map sharpening allows to correct for the contrast loss at high resolution, resulting in better interpretable maps. 
 =====Usage===== =====Usage=====
-Use this module to sharpen and subsequently low-pass filter a 3d map. Sharpening helps in interpreting the map: dependent on resolution of the map domains, secondary structure elements or side-chains will be more clearly defined. Sharpening can be either performed using a standard curve from SAXS data ("Do not use custom experimental data"; generally more conservative) or using a reference curve from another ​3d volume ("Use custom experimental data"​),​ e.g. a theoretical density computed from an atomic model. In the latter case, the pixel size of the reference must be provided. Sharpening also increases the high-resolution noise, which may impede reliable interpretation,​ in particular in less-well resolved regions of the map. Thereforefor homogeneously well-resolved maps subsequent filtering can performed ​in global mode, i.e. every part of the map is low-pass filtered to the same resolution. Heterogeneously resolved maps should ​be filtered in local mode, i.e. individual regions are filtered according to the respective local resolution.+Use this module to sharpen and subsequently low-pass filter a 3d map. Sharpening helps in interpreting the map: dependent on resolution of the map domains, secondary structure elements or side-chains will be more clearly defined. Sharpening can be either performed using a standard curve from SAXS data((Gabashvili,​ I.S., et al. (2001). Solution Structure of the E. coli 70S Ribosome at 11.5 Å Resolution. Cell, 100(5), 537-49.)) 
 + ("Do not use custom experimental data"; generally more conservative) or using a reference curve from a custom ​3d volume ("Use custom experimental data"​),​ e.g. a theoretical density computed from an atomic model. In the latter case, the pixel size of the reference must be provided. Sharpening also increases the high-resolution noise, which may impede reliable interpretation,​ in particular in less-well resolved regions of the map. Consequently, homogeneously well-resolved maps may subsequently be filtered ​in global mode, i.e. every part of the map is low-pass filtered to the same resolution. Heterogeneously resolved maps may be be filtered in local mode, i.e. individual regions are filtered according to the respective local resolution.
  
  
-===== Sharpening ​===== +===== Process ​=====
-==== Use custom experimental data ==== +
-Choose here, whether to sharpen the map based on a standard curve (generally more conservative) or based on a reference volume.+
  
 |< 100% 30% >| |< 100% 30% >|
 ^ Parameters ​                ^ Description ​    ^ ^ Parameters ​                ^ Description ​    ^
-Use  | Use custom reference ​curve for sharpening ​ | +|Amplitude source ​ - //Simulated SAXS data from ribosome// ​| Use standard ​curve for sharpening ​ | 
-Do not use custom ​experimental data        | Use standard ​curve for sharpening |+Amplitude source - //​Custom ​experimental data//| Use reference ​curve from custom 3d volume ​for sharpening ​ | 
 +| -> Experimental sampling ​       | Pixel size of reference 3d volume in Å| 
 +| Filtering mode - //global// | Low-pass filter sharpened 3d volume everywhere to the same resolution level | 
 +| -> Resolution level        | Value for global low-pass filtering in Å| 
 +| Filtering mode - //local// | Low-pass filter sub-regions of the 3d volume map according to local resolution | 
 +| -> Kernel radius ​       | Edge-length of cubic sub-regions in pixels | 
 +| -> Resolution threshold ​       | Lowest resolution to which sub-regions are low-pass filtered ​ | 
 +| Filtering mode - //none// | Omit low-pass filtering of resulting sharpened map | 
 +| Normalize | Check this box to normalize the sharpened 3d volume to mean 0 and sigma 10.  | 
 +| Pixel size | Pixel size of the 3d volume to be sharpened.  ​|
  
 |< 100% 30% >| |< 100% 30% >|
 ^ Input   ^ Description ^ ^ Input   ^ Description ^
-FirstInput ​ ​| ​Input Description 1 +3d volume ​ ​| ​3d volume to be sharpened ​
-SecondInput ​Input Description 2 +//Optional experimental data//  ​Custom 3d volume to be used as reference for sharpening ​
-| //ThirdInput//  | Input Description 3Optional Input in Italic ​|+| //Resolution levels// | Local resolution values ("​Resolution levels"​ output) from [[:​eyes:​logics:​FourierShellCorrelation]] logic | 
 +| //Local resolution map//  | Local resolution map ("​Fourier shell correlation"​ output) from [[:eyes:​logics:​FourierShellCorrelation]] logic  ​|
  
 |< 100% 30% >| |< 100% 30% >|
 ^ Output ​  ^ Description ^ ^ Output ​  ^ Description ^
-FirstOutput ​Output Description ​|+1d power spec of input 1d curve showing the rotationally averaged power spectrum of the input 3d volume | 
 +| 1d power spec of output | 1d curve showing the rotationally averaged power spectrum of the sharpened 3d volume | 
 +| Sharpened 3D | Sharpened and possibly filtered 3d volume ​|
  
 |< 100% 30% >| |< 100% 30% >|
 ^ New/Changed Header Values ^ Description ^ ^ New/Changed Header Values ^ Description ^
-headerValue1 ​what does it say? how is it changed? | +pixelSize ​Pixel size in Å |
-| headerValue2 | what does it say? how is it changed? | +
-| headerValue3 | what does it say? how is it changed? | +
-| headerValue4 | what does it say? how is it changed? ​|+
  
-==== thisIsTheNameOfMode2 ==== 
-Here, a short introduction for the given mode should be placed. Again, state WHAT and WHY this mode us useful in not more than 2 sentences. 
- 
-|< 100% 30% >| 
-^ Parameters ​                ^ Description ​    ^ 
-| Some changeable parameter ​ | Description of this parameter | 
-| -> and its sub-parameter ​  | more description | 
-| Next main parameter ​       | and more more more | 
-| -> and its sub-parameter ​  | ... descriptions | 
- 
-|< 100% 30% >| 
-^ Input   ^ Description ^ 
-| FirstInput ​ | Input Description 1 | 
-| SecondImput | Input Description 2 | 
-| ThridImput ​ | Input Description 1 | 
- 
-|< 100% 30% >| 
-^ Output ​  ^ Description ^ 
-| FirstOutput | Output Description | 
- 
-|< 100% 30% >| 
-^ New/Changed Header Values ^ Description ^ 
-| headerValue1 | what does it say? how is it changed? | 
-| headerValue2 | what does it say? how is it changed? | 
-| headerValue3 | what does it say? how is it changed? | 
-| headerValue4 | what does it say? how is it changed? | 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-=====Parameters===== 
-===Experimental Sampling [Å]=== 
-The pixel size of the input “Optional experimental data” [in Angstrom]. If no experimental data input is given, this value is not used. 
-===Fill filter with zeros=== 
-Check this checkbox to fill the filter image with zeros at indexes that are outside the important diameter. Otherwise the filter image will be filled using constant extrapolation. 
- 
-===Normalize=== 
-Check this checkbox to normalize the corrected 3d volume to mean 0 and sigma 10. 
-===Pixel size [Å]=== 
-The pixel size of the input “3d volume” [in Angstrom]. 
-===Resolution Cutoff [px]=== 
-Cut off resolution in pixel (from 0 to volume radius). 0 = no cutoff 
-===Resolution level [Å]=== 
-The target resolution level [in Angstrom] 
- 
-=====Inputs===== 
-===Optional experimental data=== 
-Provides a reference 3d structure which is used instead of the spider x-ray curve for correction 
-===3d volume=== 
-Provides the 3d volume to be sharpened 
-=====Outputs===== 
-===1d rot avg of power spec=== 
-1d curve showing the 1d averaged power spectrum of the input 3d volume 
-===Enhancement curve=== 
-1d curve showing the 1d representation of the output “Amplitude filter”. 
-===Amplitude filter=== 
-3d volume that shows the applied sharpening filter image. ​ 
-===Amplitude Corrected 3d volume=== 
-Contains the corrected output 3d volume. ​ 
-==Written Header Values== 
-  * **resolutionLevel** Resolution where cut off was performed 
-  * **pixelSize** Pixel size of the volume 
 ===== Additional Information ===== ===== Additional Information =====
 This logic is not computationally heavy but needs a lot of RAM for execution. The biggest tested dimensions were 1024x1024x1024 which occupied roughly 12gb of RAM. If not enough RAM is available, this logic will fail to execute. This logic is not computationally heavy but needs a lot of RAM for execution. The biggest tested dimensions were 1024x1024x1024 which occupied roughly 12gb of RAM. If not enough RAM is available, this logic will fail to execute.